Synthesis and characterisation of gold-(I) and -(III) complexes with 1-methyl-2-sulfanyl-1,2-dicarba-*closo*-dodecaborate

Olga Crespo, ^a M. Concepción Gimeno, ^a Peter G. Jones, ^b Antonio Laguna *, ^a and M. Dolores Villacampa ^a

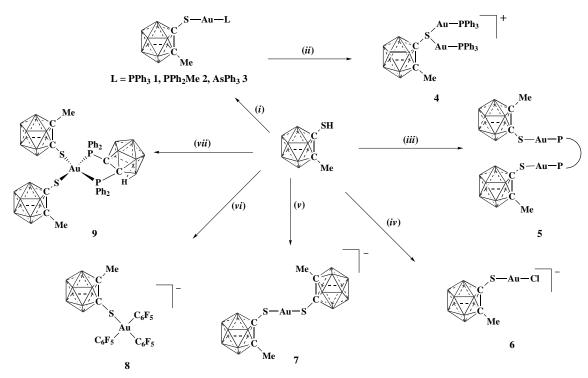
^a Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain

The reaction of 1-methyl-2-sulfanyl-1,2-dicarba-closo-dodecaborane with the gold(I) complexes [AuCl(L)] afforded the neutral thiolate derivatives [Au(SCB₁₀H₁₀CMe)L] (L = PPh₃ 1, PPh₂Me 2 or AsPh₃ 3). Further reaction of 1 with [Au(O₃SCF₃)(PPh₃)] gave the dinuclear species [Au₂(SCB₁₀H₁₀CMe)(PPh₃)₂][O₃SCF₃] 4. Another dinuclear complex, [Au₂(SCB₁₀H₁₀CMe)₂(μ -dppe)] 5, can be synthesized by reaction of [Au₂Cl₂(μ -dppe)] (dppe = Ph₂PCH₂CH₂PPh₂) with 2 equivalents of HSCB₁₀H₁₀CMe. The anionic derivatives [N(PPh₃)₂][Au(SCB₁₀H₁₀CMe)Cl] 6 and [N(PPh₃)₂][Au(SCB₁₀H₁₀CMe)₂] 7 were obtained by reaction of HSCB₁₀H₁₀CMe with [N(PPh₃)₂][AuCl₂] in a 1:1 or 2:1 molar ratio, respectively. Finally, by reaction of the thiol with suitable gold(III) precursors the anionic [NBu₄][Au(C₆F₅)₃(SCB₁₀H₁₀CMe)] 8 or the neutral [Au{(PPh₂)₂C₂B₉H₁₀}(SCB₁₀H₁₀CMe)₂] 9 derivatives were synthesized. Complexes 1, 3 and 6 have been characterised by X-ray diffraction studies.

There is a continuing interest in transition-metal complexes, and gold in particular, with thiolate ligands for several reasons. Among these are the relevance to biological systems, ¹ the potential of chemistry relating to S–C bond-cleavage reactions and desulfurization, ² the novel structure of such complexes ³ and the possible applications in organosulfur chemistry. Interest in the co-ordination chemistry of thiolate gold(i) complexes arises in part from the potential use of these derivatives in medicine, including uses as antiarthritic and cancerostatic drugs.⁴

As part of our current program in the chemistry of gold with carborane derivatives, ⁵ it appears worthwhile to investigate the synthesis and structure of gold 1-methyl-2-sulfanyl-1,2-dicarba-closo-dodecaborate complexes to compare their behaviour with those of other gold thiolate derivatives. Furthermore this dodecaborate has been scarcely studied and only the synthesis of *exo*-thiocarboranes and the study of the partially degraded species have been reported thus far. ⁶ Here we report on the synthesis of gold-(i) and -(iii) complexes with this thiolate which incorporates an *o*-carborane moiety. Furthermore, complexes incorporating an *o*-carborane backbone are receiving much attention for the potential use in tumour-seeking drugs for boron neutron capture therapy. ⁷

Results and Discussion


The reaction of 1-methyl-2-sulfanyl-1,2-dicarba-*closo*-dodecaborane with [AuCl(L)] in dichloromethane and in the presence of Na₂CO₃ affords the gold(i) thiolate complexes [Au-(SCB₁₀H₁₀CMe)L] (L = PPh₃ 1, PPh₂Me 2 or AsPh₃ 3) (see Scheme 1). Complexes 1–3 are white solids, air and moisture stable, and they behave as non-conductors in acetone solutions. Their IR spectra show bands arising from the B–H stretching modes of the o-carborane cluster between 2572 and 2602 cm⁻¹ (s, br). In the ¹H NMR spectra the signal of the SH proton has disappeared. There is a singlet for the carborane methyl protons and for the ligand L a multiplet for the phenyl protons; complex 2 also presents a doublet for the PMe group. The ³¹P-{¹H} NMR spectra show a singlet for the phosphorus atom shifted downfield in comparison with the position of the starting

materials. The positive-ion mass spectra of these derivatives show the molecular peak at m/z=649 (1, 18), 586 (2, 2) and 693 (3, 8%), although the most intense peaks are assigned to the fragments [AuL]⁺, [AuL₂]⁺ and [M + AuL]⁺.

The structures of complexes 1 and 3 have been confirmed by an X-ray diffraction study. The molecule of 1 is shown in Fig. 1 with selected bond lengths and angles in Table 1, 3 appears in Fig. 2 with selected bond lengths and angles in Table 2. The complexes are isostructural. In both molecules the gold atoms display a linear geometry with P-Au-S or As-Au-S angles of 179.70(8) or 178.34(4)°. Usually, mononuclear gold(I) thiolate derivatives are associated in pairs through short gold-gold contacts of ca. 3 Å. Contrarily, for 1 and 3 no association of the monomers by intermolecular metal-metal interactions is observed. The shortest gold-gold distances are 4.027 Å in 1 and 3.747 Å in 3. It appears therefore that steric effects preclude the intermolecular approach necessary for the weak Au^I···Au^I interactions, which quite obviously are easily overruled. Similar results have been reported in (phosphine)gold benzenethiolates in which association of the monomers is only observed with unsubstituted benzenethiolates.8

The Au-S bond distances are 2.311(2) Å in complex 1 and 2.272(2) Å in 3, on the extremes of those found in other gold thiolate complexes such as [Au(SR)(PPh₃)] (R = Ph, C₆H₂Me₃-2,4,6, $C_6H_2Et_3-2,4,6$, $C_6H_2Pr_3^i-2,4,6$ or $C_6H_4Cl-2)^{8,9}$ which lie in the range 2.284(2)-2.296(2) Å. These values are more similar to that in ${\bf 1}$ which has a phosphine as ligand. The fact that the Au-S distance is shorter in 3 may be explained by the higher trans influence of the phosphine compared with the arsine ligand. The Au-P bond length in 1 is 2.267(2) Å which compares well with other Au-P bond distances found in linear gold(I) complexes such as the related compounds [Au(SR)(PPh₃)]^{8,9} $[2.255(2) - 2.260(3) \text{ Å}] \text{ or } [Au_2(\mu - S_2C_2B_{10}H_{10})(PPh_3)_2] [2.260(2)$ Å].^{5a} In **3** the Au–As bond distance of 2.3399(8) is similar to that found in [AuCl(AsPh₃)] [2.331(1) Å],¹⁰ although smaller than those in the complexes [AuMe(AsPh₃)] [2.3800(11) Å]¹¹ or $[Au(C_2B_{10}H_{10}CCH_2CH_3)(AsPh_3)]$ [2.3740(8) Å]¹¹ maybe because of the higher trans influence of the carboranyl carbon compared with the sulfur atom.

^b Institut für Anorganische und Analytische Chemie der Technischen Universität, Postfach 3329, D-38023 Braunschweig, Germany

 $\begin{array}{lll} \textbf{Scheme 1} & \textit{(i)} \ [AuC(L)]; \textit{(ii)} \ [Au(O_3SCF_3)(PPh_3)]; \textit{(iii)} \ [Au_2Cl_2(\mu\text{-dppe})]; \textit{(iv)} \ [N(PPh_3)_2][AuCl_2]; \textit{(v)} \ [N(PPh_3)_2][AuCl_2]; \textit{(vi)} \ [NBu_4][AuBr(C_6F_5)_3]; \\ \textbf{(iii)} \ [Au_2Cl_2(\mu\text{-dppe})]; \textit{(iv)} \ [N(PPh_3)_2][AuCl_2]; \textit{(vi)} \ [N(PPh_3)_2][AuCl_2]; \textit{(vii)} \ [N(PPh_3)_2][AuCl_2]; \\ \textbf{(vii)} \ [N(PPh_3)_2][AuCl_2]; \textit{(vii)} \ [N(PPh_3)_2][AuCl_2]; \\ \textbf{(vii)} \ [N(PPh_3)_2][A$ $(vii) \frac{1}{2} [AuCl_2 \{ (PPh_2)_2 C_2 B_9 H_{10} \}]$

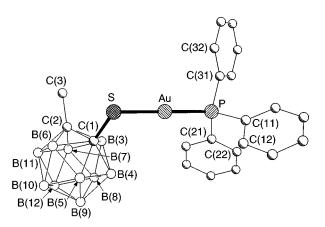


Fig. 1 Molecule of complex 1 in the crystal with the atom numbering scheme; H atoms are omitted for clarity and radii are arbitrary

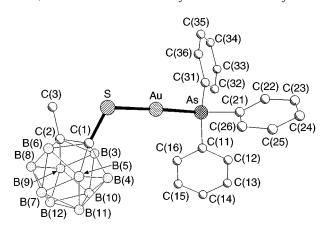


Fig. 2 Molecule of complex 3 in the crystal showing the atom labelling scheme. Details as in Fig. 1

As mentioned above, the mass spectra of complexes 1-3 indicate that the fragment $[M + AuPPh_3]^+$ is stable, and thus we have carried out a further reaction of complex 1 with [Au-(O₃SCF₃)(PPh₃)]BF₄ which gives the dinuclear species [Au₂-(SCB₁₀H₁₀CMe)(PPh₃)₂][O₃SCF₃] **4**. Although we have not got

Au-P	2.267(2)	Au-S	2.311(2)
S-C(1)	1.774(7)	P-C(11)	1.810(8)
P-C(31)	1.810(8)	P-C(21)	1.815(7)
C(1)-C(2)	1.736(10)	C(2)-C(3)	1.495(11)
P-Au-S	179.70(8)	C(1)–S–Au	103.9(3)
C(11)-P-C(31)	105.7(3)	C(11)–P–C(21)	105.9(3)

Table 1 Selected bond lengths (Å) and angles (°) for complex 1

S-C(1)	1.774(7)	P-C(11)	1.810(8)
P-C(31)	1.810(8)	P-C(21)	1.815(7)
C(1)-C(2)	1.736(10)	C(2)-C(3)	1.495(11)
P-Au-S	179.70(8)	C(1)-S-Au	103.9(3)
C(11)-P-C(31)	105.7(3)	C(11)-P-C(21)	105.9(3)
C(31)-P-C(21)	105.9(3)	C(11)–P–Au	113.7(3)
C(31)-P-Au	113.7(2)	C(21)–P–Au	111.3(2)
B(5)-C(1)-S	121.4(5)	B(4)-C(1)-S	123.9(5)
B(6)-C(1)-S	115.0(5)	B(3)-C(1)-S	120.3(5)
C(2)-C(1)-S	118.2(5)	C(3)-C(2)-C(1)	117.8(6)

Table 2 Selected bond lengths (Å) and angles (°) for complex 3

Au-S	2.272(2)	Au-As	2.3399(8)
S-C(1)	1.753(6)	As-C(11)	1.910(6)
As-C(21)	1.911(6)	As-C(31)	1.915(6)
C(1)-C(2)	1.713(8)	C(2)-C(3)	1.508(8)
S-Au-As	178.34(4)	C(1)-S-Au	103.7(2)
C(11)-As-C(21)	103.9(2)	C(11)-As-C(31)	104.3(2)
C(21)-As-C(31)	105.2(2)	C(11)-As-Au	111.6(2)
C(21)-As-Au	115.3(2)	C(31)-As-Au	115.4(2)
B(5)-C(1)-S	121.7(4)	B(4)-C(1)-S	124.5(4)
B(6)-C(1)-S	114.8(4)	B(3)-C(1)-S	120.5(4)
C(2)-C(1)-S	118.7(4)	C(3)-C(2)-C(1)	117.3(5)
C(12)-C(11)-As	121.2(5)	C(16)-C(11)-As	118.8(5)

structural confirmation of 4 we propose a structure where the thiolate ligand bridges both gold atoms; this type of derivative is well known in the chemistry of gold thiolate complexes. 12 Compound 4 behaves as a 1:1 electrolyte in acetone solutions. Its IR spectrum shows, apart from the $\nu(\mbox{\footnotesize{B-H}})$ bands, others arising from the O_3SCF_3 anion, $v_{asym}(SO_3)$ at 1265vs (br), $v_{sym}(CF_3)$ at 1223s and $v_{asym}(CF_3)$ at 1150s cm⁻¹. The ³¹P-{¹H} NMR spectrum shows one singlet for the two equivalent phosphorus atoms. In the positive-ion FAB mass spectrum of 4 the cation molecular peak appears at m/z = 1108 (25%) with coincident experimental and calculated isotopic distribution.

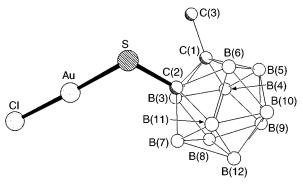


Fig. 3 The anion of complex ${\bf 6}$ in the crystal with the atom labelling scheme. Details as in Fig. 1

Table 3 Selected bond lengths (Å) and angles (°) for complex 6

Au-S S-C(2) C(1)-C(2)	2.260(2) 1.780(5) 1.710(7)	Au-C1 C(1)-C(3)	2.2794(14) 1.503(6)
S-Au-C1	176.39(5)	C(2)-S-Au	106.1(2)
C(3)-C(1)-C(2)	117.6(4)	B(11)-C(2)-S	120.8(3)
B(7)-C(2)-S	124.1(4)	B(3)-C(2)-S	120.2(3)
C(1)-C(2)-S	118.0(3)	B(6)-C(2)-S	114.9(3)

The fragments $[Au(PPh_3)_2]^+$ and $[Au(PPh_3)]^+$ are present at m/z 721 (100) and 459 (72%), respectively; also a peak at m/z 1409 (12%) appears which corresponds to the cation $[S(AuPPh_3)_3]^+$.

The treatment of $HSCB_{10}H_{10}CMe$ with $[Au_2Cl_2(\mu\text{-dppe})]$ (molar ratio 2:1) [dppe = 1,2-bis(diphenylphosphino)ethane] in dichloromethane and in the presence of Na_2CO_3 leads to the dinuclear species $[Au_2(SCB_{10}H_{10}CMe)_2(\mu\text{-dppe})]$ 5. The 1H NMR spectrum shows a singlet for the methyl protons and a multiplet for the methylene protons of the dppe ligand. In the ^{31}P -{ 1H } NMR spectrum only a singlet appears because of the equivalence of the phosphorus atoms of the diphosphine. The positive-ion FAB mass spectrum shows the highest peak at m/z=983 which corresponds to the fragment $[Au_2(SCB_{10}H_{10}CMe)-(\mu\text{-dppe})]^+$ arising by loss of one thiolate ligand.

Anionic derivatives have been synthesized from the reaction of $HSCB_{10}H_{10}CMe$ with $[N(PPh_3)_2][AuCl_2]$ in molar ratios 1:1 and 1:2 to give $[N(PPh_3)_2][AuCl(SCB_{10}H_{10}CMe)]$ 6 and $[N(PPh_3)_2][Au(SCB_{10}H_{10}CMe)_2]$ 7. Their IR spectra show bands arising from the v(B-H) frequencies at 2599s (br) and 2566s (br) cm⁻¹, respectively; for complex **6** also appears the vibration ν(Au-Cl) at 329 cm⁻¹. Both behave as 1:1 electrolytes in acetone solutions. The ¹H NMR spectra show resonances due to the BH protons as a very broad band over 2 ppm, the multiplets of the phenyl protons and a singlet arising from the methyl protons. The ³¹P-{¹H} NMR spectra present only a singlet for the two equivalent phosphorus of the cation [N(PPh₃)₂]⁺. The negative-ion mass spectra of complexes ${\bf 6}$ and ${\bf 7}$ show the anion peaks $[Au(SCB_{10}H_{10}CMe)Cl]^-$ at m/z = 420 (6, 11%) and $[Au(SCB_{10}H_{10}CMe)_2]^-$ at m/z = 576 (7, 100%). In both spectra there are peaks of higher nuclearity such as [Au₂(SCB₁₀H₁₀- $CMe)_{2}$]⁻, $[Au_{2}(SCB_{10}H_{10}CMe)_{3}]$ ⁻ or $[Au_{3}(SCB_{10}H_{10}CMe)_{4}]$ ⁻.

The structure of complex **6** has been established by an X-ray diffraction study. The anion is shown in Fig. 3 and selected bonds and angles are collected in Table 3. The co-ordination around the gold atom is almost linear, S–Au–Cl 176.39(5)°. The Au–Cl length, 2.2794(14) Å, is similar to those observed in other linear gold(i) complexes such as [AuCl($C_5H_{10}N_2S$)] [Au–Cl 2.26(1) Å] ¹³ or [AuCl(PPh₃)] [2.279(3) Å]. ¹⁴ The Au–S bond length of 2.260(2) Å is consistent with other S donors co-ordinated *trans* to Cl such as [AuCl(SPPh₃)] [Au–S 2.256(1) Å] ¹⁵ or [AuCl($C_5H_{10}N_2S$)] [Au–S 2.25(1) Å] ¹³ and slightly shorter than those found in the related compound [Au₂-(μ -S₂C₂B₁₀H₁₀)(PPh₃)₂] [Au–S 2.329(2) Å]. ^{5a} As far as we are

aware this is the first crystal structure report of an anionic gold compound bonded to a chlorine and a sulfur donor ligand.

We have also synthesized gold(III) derivatives with the 1-methyl-2-sulfanyl-1,2-dicarba-closo-dodecaborate ligand. The treatment of equimolar amounts of [NBu₄][AuBr(C_6F_5)₃] with 1-methyl-2-sulfanyl-1,2-dicarba-closo-dodecaborane in the presence of Na₂CO₃ gives [NBu₄][Au(C_6F_5)₃(SCB₁₀H₁₀CMe)] **8**. Complex **8** behaves as 1:1 electrolyte in acetone solutions. Its IR spectrum shows, apart from ν (B–H) at 2597vs (br), bands arising from the pentafluorophenyl groups bonded to gold(III) at 1510vs, 971vs, 811s and 795s and the ν (Au–S) vibration at 313s cm⁻¹. The ¹⁹F NMR spectrum shows the typical pattern of a tris(pentafluorophenyl) group; there are two multiplets for the m-, two triplets for the p- and two multiplets for the o-fluorine nuclei in the ratio 2:1. Each group of signals belongs to the mutually trans pentafluorophenyl rings and to the C_6F_5 group cis to them, respectively.

Finally, we have also synthesized another gold(III) derivative by reaction of $[AuCl_2\{(PPh_2)_2C_2B_9H_{10}\}]$ with 1-methyl-2-sulfanyl-1,2-dicarba-closo-dodecaborane in the presence of Na₂CO₃. The resulting complex $[Au\{(PPh_2)_2C_2B_9H_{10}\}-(SCB_{10}H_{10}CMe)_2]$ **9** is neutral and thus behaves as nonconductor in acetone solutions. The IR spectrum shows a very broad band centred around 2570 cm $^{-1}$ for the $\nu(B-H)$ frequencies of the two carborane types. The 1H NMR spectrum shows a singlet for the methyl protons, a multiplet for the phenyl protons and a broad signal around δ –2 assigned to the extra hydrogen atom in the pentagonal open C_2B_3 face. In the $^{31}P-\{^{1}H\}$ NMR spectrum only one signal at very low field appears which corresponds to the equivalent phosphorus atoms of the diphosphine.

Experimental

Instrumentation

Infrared spectra were recorded in the range 4000–200 cm $^{-1}$ on a Perkin-Elmer 883 spectrophotometer using Nujol mulls between polyethylene sheets. Conductivities were measured in $ca.~5\times10^{-4}$ mol dm $^{-3}$ solutions with a Philips 9509 conductimeter. The analyses (C and H) were carried out with a Perkin-Elmer 2400 microanalyzer. Mass spectra were recorded on a VG autospec instrument, with the FAB technique, using nitrobenzyl alcohol as matrix. The NMR spectra were recorded on Varian Unity 300 and Bruker ARX 300 spectrometers in CDCl₃. Chemical shifts are cited relative to SiMe₄ (1 H, external), 85% H₃PO₄ (31 P, external) and CFCl₃ (19 F, external).

Materials

The starting materials $HSCB_{10}H_{10}CMe,^6$ [AuCl(PR₃)], 16 [N(PPh₃)₂][AuCl₂], 17 [NBu₄][AuBr(C₆F₅)₃] 18 and [AuCl₂{(PPh₂)₂-C₂B₉H₁₀}] 19 were prepared by published procedures; [Au-(O₃SCF₃)(PPh₃)] was obtained from [AuCl(PPh₃)] by reaction with AgO₃SCF₃ and [Au₂Cl₂(μ -dppe)] from 2 equivalents of [AuCl(tht)] 20 (tht = tetrahydrothiophene) and 1 equivalent of the diphosphine.

Syntheses

[Au(SCB₁₀H₁₀CMe)L] (L = PPh₃ 1, PPh₂Me 2, or AsPh₃ 3). To a solution of HSCB₁₀H₁₀CMe (0.019 g, 0.1 mmol) in dichloromethane (30 cm³) was added [AuCl(PPh₃)] (0.049 g, 0.1 mmol), [AuCl(PPh₂Me)] (0.043 g, 0.1 mmol) or [AuCl(AsPh₃)] (0.053 g, 0.1 mmol) and an excess of Na₂CO₃ (0.53 g, 5 mmol). The mixture was stirred for 30 min, the excess of Na₂CO₃ filtered off and the solution concentrated to *ca.* 5 cm³. Addition of diethyl ether (10 cm³) gave complexes 1–3 as white solids. Complex 1: yield 74% (Found: C, 38.45; H, 4.05; S, 4.95. Calc. for C₂₁H₂₈AuB₁₀PS: C, 38.90; H, 4.35; S, 4.95%). $\Lambda_{\rm M}$ 0.8 Ω^{-1} cm² mol⁻¹; ¹H NMR δ 2.25 (s, 3 H, Me) and 7.3–7.6 (m, br, 15

Table 4 Details of the data collection and structure refinement for complexes 1, 3 and 6*

	$1 \cdot 0.5 \text{CH}_2 \text{Cl}_2$	$3 \cdot 0.5 \text{CH}_2 \text{Cl}_2$	$6 \cdot CH_2Cl_2$
Chemical Formula	$C_{21.5}H_{29}AuB_{10}ClPS$	$C_{21.5}H_{29}AsAuB_{10}ClS$	$C_{40}H_{45}AuB_{10}Cl_3NP_2S$
M	690.99	734.94	1045.19
Crystal habit	Colourless prism	Colourless prism	Colourless tablet
Crystal size/mm	$0.40 \times 0.30 \times 0.20$	$0.45\times0.45\times0.20$	$0.50\times0.40\times0.15$
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	C2/c	C2/c	$P2_1/c$
a/Å	16.445(6)	16.400(3)	11.2536(12)
b/Å	20.060(7)	19.868(5)	27.985(3)
c/Å	16.886(7)	16.771(3)	15.0641(14)
β/°	98.50(3)	98.52(2)	107.789(6)
U/ų	5509(4)	5404(2)	4517.4(8)
Z	8	8	4
$D_{\rm c}/{ m Mg~m^{-3}}$	1.666	1.807	1.537
F(000)	2680	2824	2072
$\mu(Mo-K\alpha)/mm^{-1}$	5.583	6.848	3.583
Transmission	0.776-0.886	0.444-0.917	0.591 - 1.000
No. reflections measured	6508	6860	9172
No. unique reflections	4847	4732	7934
$R_{ m int}$	0.0311	0.058	0.0304
$R^a[F, F > 4\sigma(F)]$	0.0398	0.040	0.0361
$R'^{b}(F^{2}, \text{ all reflections})$	0.0951	0.0957	0.0606
No. reflections used	4847	4731	7934
No. parameters	271	330	474
No. restraints	64	271	123
S	0.904	1.008	0.824
Maximum $\Delta \rho / e \text{ Å}^{-3}$	2.099	2.195	0.570

^{*} Details in common: $-100\,^{\circ}\text{C}$; $2\theta_{\text{max}}$ 50°: $R(F) = \Sigma ||F_0| - |F_c||\Sigma ||F_0||$; $R'(F^2) = [\Sigma w(F_0^2 - F_c^2)^2/\Sigma w(F_0^2)^2]^2$; $w^{-1} = \sigma^2(F_0^2) + (aP)^2 + bP$, where $P = (F_0^2 + 2F_c^2)/3$ and a and b are constants adjusted by the program; $S = [\Sigma w(F_0^2 - F_c^2)^2/(n-p)]^2$, where n is the number of data and p the number of parameters.

H); $^{31}P-\{^{1}H\}$ NMR δ 35.1 (s). Complex **2**: yield 72% (Found: C, 34.15; H, 4.50; S, 4.95. Calc. for $C_{16}H_{26}AuB_{10}PS$: C, 34.45; H, 4.70; S, 5.45%). $\Lambda_{\rm M}$ 1.5 Ω^{-1} cm² mol $^{-1}$; ^{1}H NMR δ 2.07 [d, 3 H, PMe, J(PH) 9.90 Hz], 2.19 (s, 3 H, Me) and 7.4–7.7 (m, br, 10 H); $^{31}P-\{^{1}H\}$ NMR δ 21.8 (s). Complex **3**: yield 81% (Found: C, 35.95; H, 3.50; S, 3.70. Calc. for $C_{21}H_{28}AsAuB_{10}S$: C, 36.40; H, 4.05; S, 4.65%); $\Lambda_{\rm M}$ 3 Ω^{-1} cm² mol $^{-1}$; ^{1}H NMR δ 2.26 (s, 3 H, Me) and 7.3–7.6 (m, br, 15 H).

[Au₂(SCB₁₀H₁₀CMe)(PPh₃)₂][O₃SCF₃] **4.** To a freshly prepared dichloromethane solution (20 cm³) of [Au(O₃SCF₃)-(PPh₃)] (0.061 g, 0.1 mmol) was added [Au(SCB₁₀H₁₀CMe)-(PPh₃)] (0.080g, 0.1 mmol) and the solution was stirred for 30 min. The solvent was removed *in vacuo* and addition of diethyl ether (10 cm³) gave complex **4** as a white solid. Yield 65% (Found: C, 39.55; H, 3.70; S, 2.25. Calc. for C₄₀H₄₃-Au₂B₁₀F₃O₃PS₂: C, 39.20; H, 3.60; S, 2.70%). $\Lambda_{\rm M}$ 85 Ω^{-1} cm² mol⁻¹. ¹H NMR: δ 2.18 (s, 3 H, Me) and 7.2–7.6 (m, br, 30 H). ³¹P-{¹H} NMR: δ 34.9 (s).

[Au₂(SCB₁₀H₁₀CMe)₂(μ-dppe)] 5. To a solution of HSCB₁₀-H₁₀CMe (0.038 g, 0.2 mmol) in dichloromethane (30 cm³) was added [Au₂Cl₂(μ-dppe)] (0.086 g, 0.1 mmol) and an excess of Na₂CO₃ (0.53 g, 5 mmol). The mixture was stirred for 30 min and then filtered to remove the sodium carbonate. Concentration of solvent to ca. 5 cm³ and addition of diethyl ether afforded complex 5 as a white solid. Yield 77% (Found: C, 32.75; H, 4.40; S, 5.30. Calc. for C₃₂H₅₀Au₂B₂₀P₂S₂: C, 32.80; H, 4.30; S, 5.45%). ¹H NMR: δ 2.25 (s, 6 H, Me), 2.67 (s, br, 4 H) and 7.3–7.5 (m, br, 20 H). ³¹P-{¹H} NMR: δ 35.0 (s).

 $[N(PPh_3)_2][Au(SCB_{10}H_{10}CMe)Cl]$ 6 and $[N(PPh_3)_2][Au-(SCB_{10}H_{10}CMe)_2]$ 7. To a solution of $[N(PPh_3)_2][AuCl_2]$ (0.080 g, 0.1 mmol) in dichloromethane (30 cm³) was added HSCB_{10}-H_{10}CMe (0.019 g, 0.1 mmol or 0.038 g, 0.2 mmol) and an excess of Na $_2$ CO $_3$ (0.53 g, 5 mmol). The mixture was stirred for 30 min and then filtered to remove the sodium carbonate. Concentration of solvent to $\it ca.$ 5 cm³ and addition of diethyl ether (10 cm³) afforded complex 6 or 7, respectively, as white

solids. Complex **6**: yield 78% (Found: C, 48.20; H, 4.90; N, 1.45; S, 2.95. Calc. for $C_{39}H_{43}AuB_{10}ClNP_2S$: C, 48.75; H, 4.50; N, 1.45; S, 3.35%). $\Lambda_{\rm M}$ 102 Ω^{-1} cm² mol⁻¹; ¹H NMR δ 2.20 (s, 3 H, Me) and 7.4–7.7 (m, br, 30 H); ³¹P-{¹H} NMR δ 21.2 (s). Complex **7**: yield 89% (Found: C, 45.05; H, 5.30; N, 1.25; S, 5.60. Calc. for $C_{42}H_{56}AuB_{20}NP_2S_2$: C, 45.25; H, 5.05; N, 1.25; S, 5.75%). $\Lambda_{\rm M}$ 83 Ω^{-1} cm² mol⁻¹; ¹H NMR δ 2.21 (s, 6 H, Me) and 7.4–7.8 (m, br, 30 H); ³¹P-{¹H} NMR δ 21.2 (s).

[NBu₄][Au(C₆F₅)₃(SCB₁₀H₁₀CMe)] **8.** To a dichloromethane solution (25 cm³) of [NBu₄][AuBr(C₆F₅)₃] (0.102 g, 0.1 mmol) was added HSCB₁₀H₁₀CMe (0.019 g, 0.1 mmol) and the mixture stirred for 1 h. Concentration of the solvent *in vacuo* and addition of hexane (10 cm³) gave complex **8** as a white solid. Yield 73% (Found: C, 38.96; H, 4.15; N, 1.15; S, 3.80. Calc. for C₃₇H₄₉AuB₁₀F₁₅NS: C, 39.32; H, 4.37; N, 1.23; S, 3.15%). $\Lambda_{\rm M}$ 84 Ω^{-1} cm² mol⁻¹. ¹⁹F NMR: δ – 121.8 (m, 4 F, o-F), –122.6 (m, 2 F, o-F), –160.1 [t, 2 F, p-F, J(FF) 20.0], –159.0 [t, F, p-F, J(FF) 20.2 Hz], –163.2 (m, 4 F, m-F) and –162.8 (m, 2 F, m-F).

[Au{(PPh₂)₂C₂B₉H₁₀](SCB₁₀H₁₀CMe)₂] **9.** To a solution of HSCB₁₀H₁₀CMe (0.038 g, 0.2 mmol) in dichloromethane (30 cm³) was added [AuCl₂{(PPh₂)₂C₂B₉H₁₀}] (0.077 g, 0.1 mmol) and an excess of Na₂CO₃ (0.53 g, 5 mmol). The mixture was stirred for 30 min and then filtered to remove the sodium carbonate. Concentration of solvent to *ca.* 5 cm³ and addition of hexane (10 cm³) afforded complex **9** as a yellow solid. Yield 62% (Found: C, 35.55; H, 4.80; S, 5.87. Calc. for C₃₂H₅₆AuB₂₉P₂S₂: C, 35.63; H, 5.23; S, 5.95%). ¹H NMR: δ -2.0 (m, br, 1 H), 1.99 (s, 6 H, Me) and 7.2–8.4 (m, br, 20 H). ³¹P-{¹H} NMR: δ 98.2 (s).

Crystallography

The crystals were mounted in inert oil on glass fibres and transferred to the cold gas stream of a Siemens P4 diffractometer. Data were collected using monochromated Mo-K α radiation ($\lambda = 0.710~73~\text{Å}$), scan type ω (1,6), θ -2 θ (3). Cell constants were

refined from setting angles of $\it ca.$ 60 reflections in the range 20 $10{\text -}25^{\circ}$. Absorption corrections were applied on the basis of ψ scans. Structures were solved by the heavy-atom method and refined on $\it F^2$ using the program SHELXL 93. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included using a riding model. A system of restraints to light-atom displacement-factor components and local ring symmetry was used. Further details are given in Table 4.

CCDC reference number 186/613.

Acknowledgements

We thank the Dirección General de Investigación Científica y Técnica (No. PB94-0079), the Caja de Ahorros de la Inmaculada (No. CB9/96) and the Fonds der Chemischen Industrie for financial support.

References

- E. I. Steifel, Prog. Inorg. Chem., 1977, 22, 1; R. L. Robson,
 R. R. Eady, T. H. Richardson, R. W. Miller, M. Hawkins and
 J. R. Postage, Nature (London), 1986, 322, 388; K. Kustin and
 I. G. Macara, Comments Inorg. Chem., 1982, 2, 1; B. J. Hales,
 E. E. Case, J. E. Morningstar, M. F. Dzeda and L. A. Manterer,
 Biochemistry, 1986, 25, 7251.
- F. E. Massoth, Adv. Catal., 1978, 27, 265; M. Nishioka, Energy Fuels, 1986, 2, 214.
- I. G. Dance, *Polyhedron*, 1986, 5, 1037; P. J. Blower and J. R. Dilworth, *Coord. Chem. Rev.*, 1987, 76, 121; D. W. Stephan and T. T. Nadasdi, *Coord. Chem. Rev.*, 1996, 147, 147.
- W. E. Smith and J. Reglinski, Perspect. Bioinorg. Chem., 1991, 1, 183;
 R. V. Parish and S. M. Cottrill, Gold Bull., 1987, 20, 3; D. R. Haynes and M. W. Whitehouse, New Developments in Antirheumatic Therapy, eds. K. D. Rainsford and G. P. Velo, Kluwer, Dordrecht, 1989, ch. 8, p. 207; B. M. Sutton, E. McGusty, D. T. Walz and M. J. DiMartino, J. Med. Chem., 1972, 15, 1095; B. M. Sutton, Gold Bull., 1986 19, 15; T. D. Simon, D. H. Kunishima, D. H. Vibert and A. Lorber, Cancer Res., 1981, 41, 94; C. K. Mirabeli, R. K. Johnson, C. M. Sung, L. Faucette, K. Muirhead and S. T. Crooke, Cancer Res., 1985, 45, 32; T. Okada, B. K. Patterson, S.-Q. Ye and M. E. Gurney, Virology, 1993, 192, 631.

- See, for example, (a) O. Crespo, M. C. Gimeno, P. G. Jones,
 B. Ahrens and A. Laguna, *Inorg. Chem.*, 1997, 36, 495; (b)
 O. Crespo, M. C. Gimeno, P. G. Jones and A. Laguna, *Inorg. Chem.*,
 1994, 33, 6128; (c) O. Crespo, M. C. Gimeno, P. G. Jones and
 A. Laguna, *J. Chem. Soc.*, *Dalton Trans.*, 1992, 1601.
- 6 F. Teixidor, J. Rius, A. M. Romerosa, C. Miravitlles, L. Escriche, E. Sanchez, C. Viñas and J. Casabó, *Inorg Chim. Acta*, 1990, 176, 287; F. Teixidor, J. Casabó, A. M. Romerosa, C. Viñas, J. Rius and C. Miratvilles, *J. Am. Chem. Soc.*, 1991, 113, 9895; F. Teixidor, J. A. Ayllón, C. Viñas, R. Kivekäs, R. Sillanpää and J. Casabó, *J. Organomet. Chem.*, 1994, 483, 153; F. Teixidor, J. A. Ayllón, R. Kivekäs, R. Sillanpää and J. Casabó, *Inorg. Chem.*, 1994, 33, 1756.
- R. F. Barth, A. H. Soloway and R. G. Fairchild, *Cancer Res.*, 1990,
 1061; M. F. Hawthorne, *Pure Appl. Chem.*, 1991, 63, 327; M. F. Hawthorne, *Angew Chem.*, 1993, 32, 950.
- 8 M. Nakamoto, W. Hiller and H. Schmidbaur, *Chem. Ber.*, 1993, **126**, 605.
- 9 J. M. Forward, D. Bohmann, J. P. Fackler, jun. and R. J. Staples, *Inorg. Chem.*, 1995, **34**, 6330.
- 10 B. Weissbart, L. J. Larson, M. M. Olmstead, C. P. Nash and D. S. Tinti, *Inorg. Chem.*, 1995, 34, 393.
- 11 B. D. Reid and A. J. Welch, J. Organomet. Chem., 1992, 438, 371.
- See, for example, S. Wang and J. P. Fackler, jun., *Inorg. Chem.*, 1990,
 4404; P. G. Jones and A. Weinkauf, *Z. Kristallogr.*, 1994, 209, 87;
 A. Sladek, W. Schneider, K. Angermaier, A. Bauer and H. Schmidbaur, *Z. Naturforsch.*, *Teil B*, 1996, 51, 765.
- 13 M. S. Hussain and A. A. Isab, Transition Met. Chem., 1984, 9, 398.
- 14 N. C. Baenzinger, W. E. Bennett and D. M. Soboroff, Acta Crystallogr., Sect. B, 1976, 32, 962.
- 15 M. S. Hussain and E. O. Schlemper, Acta Crystallogr., Sect. C, 1987, 43, 450.
- 16 R. Usón and A. Laguna, Inorg. Synth., 1982, 21, 71.
- 17 P. Braunstein and R. J. H. Clark, J. Chem. Soc., Dalton Trans., 1973, 1845.
- 18 R. Usón, A. Laguna and J. Vicente, J. Organomet. Chem., 1977, 131, 471
- 19 F. Teixidor, M. M. Abad, R. Kivekäs and R. Sillanpää, *J. Organomet. Chem.*, 1996, **509**, 139.
- 20 R. Usón, A. Laguna and M. Laguna, Inorg. Synth., 1989, 26, 85.
- 21 G. M. Sheldrick, SHELXL 93, Program for Crystal Structure Refinement, University of Göttingen, 1993.

Received 22nd April 1997; Paper 7/02760E